Synaptic Neuronal Plasticity
نویسندگان
چکیده
Context: The current study aimed to review research articles concerning cortical representational plasticity following the manipulations of inputs. Evidence Acquisition: This review article compromised previous studies in PubMed, Google Scholar and Scientific Information databases according to the keywords since 1988. Results: CA1 neurons depolarization paired with CA3 presynaptic input result in EPSPs amplitude enhancement called LTP. Theta-burst stimulation of layer IV produced long term potentiation (LTP) in the granular primary motor cortex, but the agranular or primary somatosensory cortex was capable of generating LTP in case of GABAA receptor inhibition. Upper layers (UL)-induced, and White Matter WM-induced plasticity in layer VI corticogeniculate neurons were produced through type-5 metabotropic glutamate and N-methyl-Daspartate (NMDA) receptors, respectively. Calcineurin and cannabinoid type 1 receptors are involved in WM-induced and UL-induced hetLTD, respectively. Long-term potentiation of inhibitory postsynaptic currents (IPSCs) was produced in FS-GABA neurons in layer II/III of the mouse visual cortex by tetanic activation. Conclusions: In summary, the current study presents rational evidences for specific fundamental forms of plasticity, containing associative long-term potentiation and depression of excitatory and inhibitory postsynaptic potentials.
منابع مشابه
The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کاملMorphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons
Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...
متن کاملبررسی اثر تحمل دارویی ناشی از مصرف مزمن مرفین و سالیسیلات بر شکل پذیری سیناپسی
Background & Aim: Salicylates and opioids are widely used in chronic pain relief. Chronic use of these drugs reorganizes synaptic function, especially experience-dependent plasticity in brain regions. Therefore, in this study the effects of chronic administration of salicylate and morphine on synaptic plasticity were investigated. Methods: in this review, Elsevier, Science Direct, PubMed and G...
متن کاملDevelopmental effect of light deprivation on synaptic plasticity of rats' hippocampus: implications for melatonin
Objective(s): There are few reports have demonstrated the effect of a change-in-light experience on the structure and function of hippocampus. A change-in-light experience also affects the circadian pattern of melatonin secretion. This study aimed to investigate developmental effect of exogenous melatonin on synaptic plasticity of hippocampus of light deprived rats. Materials and Methods: The ...
متن کاملDevelopmental Effects of Melatonin on Synaptic Plasticity of Hippocampal CA1 Neurons in Visual Deprived Rats
Background & Aims: Change in visual experience impairs circadian rhythms. In this study, The effects of visual deprivation during critical period of brain development and melatonin intake on synaptic plasticity of hippocampal CA1 neurons were evaluated. Methods: This experimental study was done on male rats kept in standard 12 hour light/dark condition (L...
متن کاملHomeostatic Plasticity Achieved by Incorporation of Random Fluctuations and Soft-Bounded Hebbian Plasticity in Excitatory Synapses
Homeostatic plasticity is considered to maintain activity in neuronal circuits within a functional range. In the absence of homeostatic plasticity neuronal activity is prone to be destabilized because Hebbian plasticity mechanisms induce positive feedback change. Several studies on homeostatic plasticity assumed the existence of a process for monitoring neuronal activity on a time scale of hour...
متن کامل